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 15 

S1. Channel pruning for VDL-SIM network 16 

Network pruning is a technique to reduce model size and computational burden 17 

by removing unnecessary parameters from a neural network[1]. These 18 

unnecessary parameters have limited contribution to the performance of the 19 

model. Channel pruning[2] is a simple way of pruning the network, which 20 

focuses on the channels in the convolutional layer of the neural network. The 21 

goal of pruning is to reduce the size of the model, thereby reducing the 22 

computational cost, increasing the speed of inference and making it more 23 

suitable for deployment in resource-limited environments[3-4]. However, 24 

channel pruning needs to be carefully balanced to ensure that the speedup is not 25 

accompanied by a deterioration of the performance of the task. 26 

After the initial construction of the VDL-SIM network, we adopt the way 27 

of channel pruning to further improve the reconstruction speed of the network. 28 
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Under the FOV of 512 pixel×512 pixel, the reconstruction speeds of the models 29 

with 64, 32 and 16 channels are 5, 15 and 43 frame/s, respectively. The 30 

resolution of the corresponding reconstructed images are calculated by 31 

decorrelation analysis method[5], in which the model performance is better for 32 

64 and 32 channel sizes, which are 149 nm and 159 nm [Fig. S1(b-c)], 33 

respectively. However, the performance of the 16-channel size model is 34 

impaired with a resolution of only 187 nm (Fig. S1(d)). For the two close 35 

microtubules in the zoomed-in boxes, we plot their intensity distribution 36 

profiles [Fig. S1(a)]. It shows that the distinguishing ability is similar for 64 37 

and 32 channel sizes, whereas the reconstruction ability of 16 channel size is 38 

obviously deteriorated. Therefore, considering both reconstruction speed and 39 

quality, the network with a channel size of 32 is the best choice. 40 

 41 

Fig. S1 Comparison of VDL-SIM reconstructed images for different channel sizes. (a) The 42 
intensity distribution profiles for two close microtubules in (b-c) enlarged boxes, at channel 43 
size of 64, 32, and 16. (b) The reconstructed image of VDL-SIM network with channel size 44 
16 and its enlarged view. (c) The reconstructed image of VDL-SIM network with channel 45 
size 32 and its enlarged view. (d) The reconstructed image of VDL-SIM network with 46 
channel size 64 and its enlarged view. Scale bars: 3.28 µm (left image) and 0.75 µm (right 47 
boxed magnified images). 48 



S2. Training datasets 49 

The training dataset used in this work is based on the open-source BioSR. 50 

Specifically, we selected relatively complex structure of F-actin in BioSR as 51 

the training structure, which allows the network to learn and understand 52 

complex patterns better and thus to have higher generalizability to other 53 

structures. In our experiments, we focus on the training datasets of three 54 

biological structures: the ER [Fig. S2(b)], the microtubules [Fig. S2(a)], and the 55 

F-actin [Fig. S2(c)], which represent the increasing complexity of the structures. 56 

(Fig. S2) shows the reconstructed outputs of our network for microtubules after 57 

training based on different structures. Comparing Figs. S2(d-f), it is obvious 58 

that the reconstructed super-resolution image of the network trained out based 59 

on the ER will have similarity to the ER structure with serious distortion [Fig. 60 

S2(e)]. In contrast, the network trained based on the microtubules structure 61 

reconstructs with more detail [Fig. S2(d)], but the learning of complex 62 

structures is still not as accurate as the F-actin structure [Fig.S2(f)]. Fig. S2(h) 63 

shows line profiles of neighboring microtubules in the enlarged region of the 64 

images. The output of the F-actin trained VDL-SIM contains two neighboring 65 

microtubules with the distance between the peaks of the profiles greater than 66 

the gap between the ER and microtubules in the same cropped region. 67 



 68 

Fig. S2 Comparison of reconstructed images of the training dataset for three different biological 69 
structures. (a) (b) (c) The GT images of the training dataset for microtubules (MT), ER and F-70 
actin, respectively. (d) (e) (f) The reconstructed microtubules images and their enlarged images 71 
after training based on the biological structures microtubules (MT), ER and F-actin, 72 
respectively. (g) Shows the wide-field image common to (d) (e) (f) microtubules. (h) The line 73 
profile of neighboring microtubules in the magnified images. Scale bars,1µm for the GT images 74 
of the training dataset. scale bars,3µm for the reconstructed images. and boxed magnified 75 
images, Scale bars:1 µm. 76 

The F-actin structure was selected to perform data augmentation on the 77 

training dataset. We selected 50 different regions of interest, each with nine 78 

SNR levels, and randomly rotated the images to extend the datasets. Datasets 79 

of 40 regions are used for training, and datasets of the remaining 10 regions are 80 

used for validation. To train the network model, we use a supervised learning 81 

approach. The widefield images are treated as the network inputs. The paired 82 

reference images for the network are the traditional SIM reconstructed image 83 

after background removal by the rolling ball algorithm. The information is more 84 

concentrated after the background suppression, which can help the network to 85 

better understand the structural features while reducing the demand of 86 

computational resources. 87 



S3. The effect of the rolling ball algorithm on VDL-SIM 88 

The rolling ball algorithm is a commonly used image processing algorithm for 89 

background estimation and subtraction. It is based on the assumption of 90 

smoothness of the background in the image and approximates the background 91 

by fitting a rolling sphere. The basic idea of the algorithm is to scroll a sphere 92 

from the top to the bottom of the image, and the radius of the sphere is adjusted 93 

according to the changing gray value of the image pixels. When the sphere 94 

intersects with the background part of the image, the surface of the sphere does 95 

not overlap with the foreground part of the image, so the gray intensity inside 96 

the sphere can be considered as an approximation of the background. The 97 

equation of the rolling ball algorithm can be described as 98 

  2( , ) min ( , ) -B x y I x a y b r= + +  (S1) 99 

where ( , )B x y  is the pixel value of the background estimated image, ( ),I x y  is the 100 

pixel value of the raw image, r  is the radius of the sphere, a  and b  are the 101 

offsets of the center of the sphere with respect to the pixel ( ),x y . The equation 102 

indicates that for a given pixel, the background value can be estimated by 103 

calculating the corresponding minimum value inside the sphere. Then, the 104 

background of the whole image is calculated by scrolling the sphere from the 105 

top to the bottom of the image. 106 

To implement the algorithm, the radius and the center of the sphere need to 107 

be adjusted to accommodate different background levels. The reconstructed 108 



results of VDL-SIM with and without rolling ball processing are shown in Fig. 109 

S3(a-c), the background of the reconstructed image is suppressed and the image 110 

contrast is improved after processing. As shown in Fig. S3(d), the valley of the 111 

curve for r=5 almost coincides with r=10, which indicates that the radius of 5 112 

is sufficient for background suppression. The results thus show that the rolling 113 

ball algorithm can reduce the influence of the background on the VDL-SIM 114 

reconstruction. 115 

 116 

Fig. S3 The influence of the rolling ball radius on VDL-SIM reconstruction. (a) Super-117 
resolution image reconstructed by VDL-SIM without rolling ball operation on the training 118 
images. (b) Super-resolution image reconstructed by VDL-SIM with rolling ball operation on 119 
the training images (radius size of 5). (c) Super-resolution image reconstructed by VDL-SIM 120 
with rolling ball operation on the training images (radius size of 10). (d) The intensity 121 
distribution profiles alone the yellow lines in (a-c). Scale bars: 1 µm. 122 

S4. Extremely low SNR imaging 123 

When imaging biological living specimens, there are many application 124 

situations that require lower light intensities and exposure times to minimize 125 

damage to the organisms. The reason for this requirement is to maintain the life 126 



activities and to avoid cell damage, cell death, or other irreversible changes in 127 

morphology and structure. In this regard, low SNR imaging conditions are 128 

necessary to help maintain the physiology of living specimens. In the following, 129 

we compare the imaging results of VDL-SIM with the conventional algorithms 130 

HiFi and IM SIM at extremely low SNR.  131 

Imaging results with low SNR greater than 10 have been compared in detail 132 

in section 3.3. Here we compare the imaging conditions with extremely low 133 

SNR below 10. In this condition the traditional algorithms are no longer able to 134 

estimate the parameters and lose the ability to image. VDL-SIM, in contrast, 135 

still has the ability to discriminate biological structures and provides a useful 136 

tool for SIM imaging at extremely low SNR. 137 

 138 
Fig. S4 Comparison of extremely low SNR reconstructed images. (a) Reconstructed wide-field 139 
(WF) images. (b) Conventional HiFi SIM algorithm reconstructed images. (c) Conventional IM 140 
SIM algorithm reconstructed images. (d) Reconstructed images by VDL-SIM algorithm. Larger 141 
images, scale bar: 5 μm. Enlarged images, scale bar: 1 μm. Three extremely low SNR levels 142 
with shallow to deep corresponding to increased SNR, from low to high are 1.768, 6.134 and 143 
9.916. 144 



Fig. S4 we show three SNR levels below 10. At SNR=1.768 and 6.734, the 145 

HiFi algorithm can only shadow a little bit of biological structures in the noise 146 

artifacts [Fig. S4(b)]. With the improvement of SNR, the noise artifacts are 147 

reduced at SNR=9.916, but still without reconstruction ability. The imaging 148 

results of the IM algorithm at extremely low SNR are even more unsatisfactory 149 

[Fig. S4(c)]. However, VDL-SIM can be used as a complementary technique 150 

for this application scenario, giving the observer a reference of the biological 151 

structure [Fig. S4(d)]. Benefit from deep learning for large-scale data training, 152 

feature learning and abstract representation. These make it possible to better 153 

adapt to imaging conditions with extremely low SNR and provide new 154 

solutions when parameters are difficult to estimate. Nevertheless, for specific 155 

tasks, it is still necessary to choose the right method and tuning approach 156 

depending on the characteristics of the problem and the accuracy requirements. 157 

Fig. S5 VDL-SIM video frame performance evaluation 158 

 159 
Fig. S5 VDL-SIM video frame performance evaluation. (a) Screenshot of the video content of 160 
the fixed imaging region from 00:05-00:12s in Video 2. (b) Microtubules imaging results of 161 
VDL-SIM. (c) Microtubules imaging results of the conventional HiFi SIM algorithm. (d) 162 
Performance comparison table of VDL-SIM and HiFi reconstructed images. The imaging 163 
condition, SNR is 2.46. Exposure time is set to 15 ms. 164 
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